Homework \#4

Due on February 7, 2012 at noon

NOTE: The following problems are from Chapter 1 of the textbook.

1) Prove that in Example 6.25 (i) of the textbook, $T(X)=\left(X_{(1)}, X_{(n)}\right)$ is not a complete statistic.
2) Let $f(x, y)=x^{2}+y^{2}$, which maps from \mathbb{R}^{2} to ($0, \infty$). Show that f is convex function and describe the supporting hyper-plane $L(x)$ at the point $(1,0)$.
3) The logistic regression model is

$$
p(y= \pm 1 \mid x, w)=\frac{1}{1+\exp \left(-y \cdot w^{T} x\right)}
$$

where y is binary, x is a vector of covariates, and w is called the regression parameter. This model can be used for binary classification or for predicting the certainty of a binary outcome. To estimate w, the maximum likelihood estimation method is often used. The log-likelihood function $l(w)$ can be written as

$$
l(w)=-\sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i} \cdot w^{T} x_{i}\right)\right) .
$$

The MLE is the maximize of $l(w)$ with respect to w. Assume $x x^{T}$ is non-degenerated. Show that the MLE is unique if exists.
4) Let F and G be probability measures on \mathbb{R}^{k}. Let $h: \mathbb{R}^{k} \rightarrow[0, \infty)$ be convex with $h(x) \geq h(0)=0$ for all $x \in \mathbb{R}^{k}$. Suppose that $E_{F}[h(X)]<E_{G}[h(X)]$. Show that there is a convex set $A \subset \mathbb{R}^{k}$ with $0 \in A$ such that $F(A)>G(A)$.
Hint: First try to prove that

$$
E_{F}[h(X)]=-\int_{-\infty}^{\infty} h(x) d F(X>x) d x=\int_{0}^{\infty} F(h(X)>t) d t
$$

5) Let $0<\alpha<1$.
(a) Show that the function $f(x, y)=-x^{\alpha} y^{1-\alpha}$ is convex on

$$
\left\{(x, y) \in \mathbb{R}^{2}: x>0 \text { and } y>0\right\}
$$

(b) for positive random variable X and Y with finite means, use the above result to prove the Hölder's inequality:

$$
E\left[X^{\alpha} Y^{1-\alpha}\right] \leq[E(X)]^{\alpha}[E(Y)]^{1-\alpha}
$$

(c) Use parts (a) and (b) to prove that the normalizing term $A(\eta)$ is a canonical exponential family is a convex function on the natural parameter space.

